Breakdown of thermalization in finite one-dimensional systems

Marcos Rigol

Department of Physics, Georgetown University

Finite-Temperature Non-Equilibrium Superfluid Systems
Van Mildert College, Durham, UK
September 14-17, 2009
Outline

1 Introduction
 - Experiments and numerical simulations
 - Thermalization in quantum systems

2 Non-equilibrium dynamics in one-dimension
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3 Integrable systems
 - Generalized Gibbs ensemble

4 Summary
Experiments in the 1D regime

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

$$U_{1D}(x) = g_{1D} \delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m \omega_\perp}{2\hbar}}}$$
Experiments in the 1D regime

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

$$U_{1D}(x) = g_{1D} \delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m \omega_\perp}{2\hbar}}}$$

Girardeau ’60

T_{1D}: Average energy in the 1D tubes
U_0: Lattice depth (\sim LASER intensity)

$$\gamma_{avg} = \frac{E_{int}}{E_{kin}}$$
Experiments in the 1D regime

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

$$U_{1D}(x) = g_{1D} \delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_{\perp}}{1 - C a_s \sqrt{\frac{m \omega_{\perp}}{2\hbar}}}$$

Lieb, Schulz, and Mattis '61

B. Paredes et al.,

$n(x)$: Density distribution

$n(p)$: Momentum distribution
Absence of thermalization in 1D?

Absence of thermalization in 1D?

Absence of thermalization in 1D?

Experiment

Theory

Marcos Rigol (Georgetown University)

Breakdown of thermalization in 1D

September 17, 2009
A quantum Newton’s cradle?
Absence of thermalization in 1D

\[\gamma = \frac{E_{\text{int}}}{E_{\text{kin}}} \]

- \(E_{\text{int}} \): Interaction energy
- \(E_{\text{kin}} \): Kinetic energy

If \(\gamma \gg 1 \) the system is in the strongly correlated Tonks-Girardeau regime.

If \(\gamma \ll 1 \) the system is in the weakly interacting regime.

Absence of thermalization in 1D numerical simulations

Hard-core bosons (integrable)
Absence of thermalization in 1D numerical simulations

Hard-core bosons (integrable)

Spinless fermions Hamiltonian

\[H = -t \sum_j \left(c_{j+1}^\dagger c_j + h.c. \right) + V \sum_j n_j n_{j+1} + V_2 \sum_j n_j n_{j+2} \]

Momentum distribution function

\[\langle n_k \rangle \]

Soft-core bosons
Outline

1. Introduction
 - Experiments and numerical simulations
 - Thermalization in quantum systems

2. Non-equilibrium dynamics in one-dimension
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Generalized Gibbs ensemble

4. Summary
Thermalization in quantum systems

If the initial state is not an eigenstate of \hat{H}

$$|\psi_I\rangle \neq |\Psi_\alpha\rangle \quad \text{where} \quad \hat{H}|\Psi_\alpha\rangle = E_\alpha |\Psi_\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_I | \hat{H} | \psi_I \rangle,$$

then a generic observable A will evolve in time following

$$A(t) \equiv \langle \psi(t) | \hat{A} | \psi(t) \rangle \quad \text{where} \quad |\psi(t)\rangle = e^{-i\hat{H}t} |\psi_I\rangle.$$
Thermalization in quantum systems

If the initial state is not an eigenstate of \hat{H}

$$|\psi_I\rangle \neq |\psi_\alpha\rangle \quad \text{where} \quad \hat{H}|\psi_\alpha\rangle = E_\alpha |\psi_\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_I | \hat{H} | \psi_I \rangle,$$

then a generic observable A will evolve in time following

$$A(t) \equiv \langle \psi(t) | \hat{A} | \psi(t) \rangle \quad \text{where} \quad |\psi(t)\rangle = e^{-i\hat{H}t} |\psi_I\rangle.$$

Will a generic A in a generic system thermalize?

$$\overline{A(t)} = A(E_0) = A(T).$$
Thermalization in quantum systems

If the initial state is not an eigenstate of \(\hat{H} \)

\[
|\psi_I\rangle \neq |\Psi_\alpha\rangle \quad \text{where} \quad \hat{H}|\Psi_\alpha\rangle = E_\alpha|\Psi_\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_I | \hat{H} | \psi_I \rangle,
\]

then a generic observable \(A \) will evolve in time following

\[
A(t) \equiv \langle \psi(t) | \hat{A} | \psi(t) \rangle \quad \text{where} \quad |\psi(t)\rangle = e^{-i\hat{H}t} |\psi_I\rangle.
\]

Will a generic \(A \) in a generic system thermalize?

\[
\overline{A(t)} = A(E_0) = A(T).
\]

One can rewrite

\[
A(t) = \sum_{\alpha', \alpha} C_{\alpha'}^* C_\alpha e^{i(E_{\alpha'} - E_\alpha)t} A_{\alpha' \alpha} \quad \text{where} \quad |\psi_I\rangle = \sum_\alpha C_\alpha |\Psi_\alpha\rangle,
\]

and taking the infinite time average (diagonal ensemble)

\[
\overline{A(t)} = \sum_\alpha |C_\alpha|^2 A_{\alpha \alpha},
\]

which depends on the initial conditions through \(C_\alpha = \langle \Psi_\alpha | \psi_I \rangle \).
Outline

1 Introduction
 - Experiments and numerical simulations
 - Thermalization in quantum systems

2 Non-equilibrium dynamics in one-dimension
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3 Integrable systems
 - Generalized Gibbs ensemble

4 Summary
Relaxation dynamics of hard-core boson in 1D

Hardcore bosons in one dimension

\[\hat{H} = \sum_{i=1}^{L} \left\{ -t \left(\hat{b}_i^\dagger \hat{b}_{i+1} + \text{H.c.} \right) + V \hat{n}_i \hat{n}_{i+1} - t' \left(\hat{b}_i^\dagger \hat{b}_{i+2} + \text{H.c.} \right) + V' \hat{n}_i \hat{n}_{i+2} \right\} \]

Relaxation dynamics of hard-core boson in 1D

Hardcore bosons in one dimension

\[
\hat{H} = \sum_{i=1}^{L} \left\{ -t \left(\hat{b}_{i}^\dagger \hat{b}_{i+1} + \text{H.c.} \right) + V \hat{n}_{i} \hat{n}_{i+1} - t' \left(\hat{b}_{i}^\dagger \hat{b}_{i+2} + \text{H.c.} \right) + V' \hat{n}_{i} \hat{n}_{i+2} \right\}
\]

Equilibrium properties

Nearest-neighbor model

\[t' = V' = 0 \]

Integrable (XXZ chain)

Half filling: \[N_b = \frac{L}{2} \]

S-I Phase transition \(V = 2t \)

Other fillings: \(N_b \neq \frac{L}{2} \)

Superfluid phase for all \(V, t \)

Next-nearest-neighbor model

\[t', V' \neq 0 \]

Nonintegrable

Half filling: \[N_b = \frac{L}{2} \]

Competing phases

Other fillings: \(N_b \neq \frac{L}{2} \)

Superfluid phase for small \(V', t' \)
Relaxation dynamics of hard-core boson in 1D

Hardcore bosons in one dimension

\[\hat{H} = \sum_{i=1}^{L} \left\{ -t \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + V \hat{n}_{i} \hat{n}_{i+1} - t' \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+2} + \text{H.c.} \right) + V' \hat{n}_{i} \hat{n}_{i+2} \right\} \]

Nonequilibrium dynamics in 1D

\[N_{b} = 8 \text{ bosons} \]
\[N = 24 \text{ lattice sites} \]

Hilbert space: \(H = 735, 471 \)

Largest \(k \)-sector: \(D = 30, 667 \)

Fix \(t' = V' \) and quench

\[t_{ini} = 0.5, V_{ini} = 2 \]

\[\rightarrow t_{fin} = 1, V_{fin} = 1 \]

All \(k = 0 \) states are used!
Relaxation dynamics of hard-core boson in 1D

Hardcore bosons in one dimension

\[\hat{H} = \sum_{i=1}^{L} \left\{ -t \left(\hat{b}^\dagger_i \hat{b}_{i+1} + \text{H.c.} \right) + V \hat{n}_i \hat{n}_{i+1} - t' \left(\hat{b}^\dagger_i \hat{b}_{i+2} + \text{H.c.} \right) + V' \hat{n}_i \hat{n}_{i+2} \right\} \]

Nonequilibrium dynamics in 1D

\[\mathcal{N}_b = 8 \text{ bosons} \]
\[\mathcal{N} = 24 \text{ lattice sites} \]

Hilbert space: \[H = 735, 471 \]
Largest \(k \)-sector: \(D = 30, 667 \)

Fix \(t' = V' \) and quench
\[t_{ini} = 0.5, V_{ini} = 2 \]
\[\rightarrow t_{fin} = 1, V_{fin} = 1 \]

All \(k = 0 \) states are used!
Results for $L = 24, N_b = 8$

Relative differences

$$\delta n_k(\tau) = \frac{\sum_k |n(k, \tau) - n_{\text{diag}}(k)|}{\sum_k n_{\text{diag}}(k)}$$

Effective temperature $T = 3.0$

$$E = Z^{-1} \text{Tr} \left\{ \hat{H} \exp(-\hat{H}/k_B T) \right\}$$
Results for $L = 21$, $N_b = 7$

Relative differences

$$\delta n_k(\tau) = \frac{\sum_k |n(k, \tau) - n_{\text{diag}}(k)|}{\sum_k n_{\text{diag}}(k)}$$

Effective temperature $T = 3.0$

$$E = Z^{-1} \text{Tr} \left\{ \hat{H} \exp(-\hat{H}/k_B T) \right\}$$
Outline

1. Introduction
 - Experiments and numerical simulations
 - Thermalization in quantum systems

2. Non-equilibrium dynamics in one-dimension
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Generalized Gibbs ensemble

4. Summary

Marcos Rigol (Georgetown University)
Breakdown of thermalization in 1D
September 17, 2009 15 / 35
Canonical calculation

\[A = \text{Tr} \left\{ \hat{A} \hat{\rho} \right\} \]

\[\hat{\rho} = Z^{-1} \exp \left(-\frac{\hat{H}}{k_B T} \right) \]

\[Z = \text{Tr} \left\{ \exp \left(-\frac{\hat{H}}{k_B T} \right) \right\} \]

\[E_0 = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\} \quad T = 3.0J \]
Statistical description after relaxation (nonintegrable)

Canonical calculation

\[A = \text{Tr}\left\{ \hat{A} \hat{\rho} \right\} \]
\[\hat{\rho} = Z^{-1} \exp\left(-\hat{H}/k_B T \right) \]
\[Z = \text{Tr}\left\{ \exp\left(-\hat{H}/k_B T \right) \right\} \]
\[E_0 = \text{Tr}\left\{ \hat{H} \hat{\rho} \right\} \quad T = 3.0J \]

Microcanonical calculation

\[A = \frac{1}{N_{\text{states}}} \sum_{\alpha} \langle \psi_\alpha | \hat{A} | \psi_\alpha \rangle \]

with \(E_0 - \Delta E < E_\alpha < E_0 + \Delta E \)

\(N_{\text{states}} \): # of states in the window
Breakdown of thermalization

\[L = 24, \ N_b = 8 \]

- **Diff. Diag. vs Microcan.**
 - \(T=2.0, n(k) \)
 - \(T=2.0, N(k) \)
 - \(T=3.0, n(k) \)
 - \(T=3.0, N(k) \)

- **Diff. two initial states**
 - \(T=2.0, n(k) \)
 - \(T=2.0, N(k) \)
 - \(T=3.0, n(k) \)
 - \(T=3.0, N(k) \)
Breakdown of thermalization

$L = 24, N_b = 8$

$L = 21, N_b = 7$
Outline

1. Introduction
 - Experiments and numerical simulations
 - Thermalization in quantum systems

2. Non-equilibrium dynamics in one-dimension
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Generalized Gibbs ensemble

4. Summary
Paradox?

\[\sum_{\alpha} |C_\alpha|^2 A_{\alpha\alpha} = \langle A \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0 - E_\alpha| < \Delta E} A_{\alpha\alpha} \]

Left hand side: Depends on the initial conditions through \(C_\alpha = \langle \Psi_\alpha | \psi_I \rangle \)
Right hand side: Depends only on the initial energy
Eigenstate thermalization hypothesis

Paradox?

\[\sum_{\alpha} |C_{\alpha}|^2 A_{\alpha \alpha} = \langle A \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0 - E_{\alpha}|<\Delta E} A_{\alpha \alpha} \]

Left hand side: Depends on the initial conditions through \(C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle \)
Right hand side: Depends only on the initial energy

i) For physically relevant initial conditions, \(|C_{\alpha}|^2 \) practically do not fluctuate.

ii) Large (and uncorrelated) fluctuations occur in both \(A_{\alpha \alpha} \) and \(|C_{\alpha}|^2 \). Any physically relevant initial state performs an unbiased sampling of \(A_{\alpha \alpha} \).
Eigenstate thermalization hypothesis

Paradox?

\[\sum_{\alpha} |C_{\alpha}|^2 A_{\alpha\alpha} = \langle A \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0 - E_\alpha| < \Delta E} A_{\alpha\alpha} \]

Left hand side: Depends on the initial conditions through \(C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle \)

Right hand side: Depends only on the initial energy

State 1

- \(E_0 = -4.62, T = 3 \)

State 2

- \(E_0 = -4.62, T = 3 \)
Eigenstate thermalization hypothesis

Paradox?

\[\sum_{\alpha} |C_{\alpha}|^2 A_{\alpha\alpha} = \langle A \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0 - E_{\alpha}| < \Delta E} A_{\alpha\alpha} \]

Left hand side: Depends on the initial conditions through \(C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle \)
Right hand side: Depends only on the initial energy

Eigenstate thermalization hypothesis (ETH)
[Deutsch, PRA 43 2046 (1991); Srednicki, PRE 50, 888 (1994); Rigol, Dunjko, and Olshanii, Nature 452, 854 (2008).]

iii) The expectation value \(\langle \Psi_{\alpha} | \hat{A} | \Psi_{\alpha} \rangle \) of a few-body observable \(\hat{A} \) in an eigenstate of the Hamiltonian \(| \Psi_{\alpha} \rangle \), with energy \(E_{\alpha} \), of a large interacting many-body system equals the thermal average of \(\hat{A} \) at the mean energy \(E_{\alpha} \):

\[\langle \Psi_{\alpha} | \hat{A} | \Psi_{\alpha} \rangle = \langle A \rangle_{\text{microcan.}}(E_{\alpha}) \]
ETH – far away from integrability ($t' = V' = 0.24$)

Momentum distribution

Eigenstates $a - d$ are the ones with energies closest to E_0.
ETH – far away from integrability \((t' = V' = 0.24)\)

Momentum distribution

Eigenstates \(a - d\) are the ones with energies closest to \(E_0\)

\[
n(k_x = 0) \text{ vs energy}
\]

\[
\rho(E) = P(E) \times \text{dens. stat.}
\]

\[
P(E)_{\text{exact}} \rightarrow |C_\alpha|^2
\]

\[
P(E)_{\text{mic.}} \rightarrow \text{constant}
\]

\[
P(E)_{\text{can.}} \rightarrow \exp\left(-\frac{E}{k_B T}\right)
\]
Breakdown of ETH \(\rightarrow\) integrability \((t' = V' = 0.03)\)

Momentum distribution

Eigenstates \(a - d\) are the ones with energies closest to \(E_0\)

\[
n(k_x = 0) \text{ vs energy}
\]

\[
\rho(E) = P(E) \times \text{dens. stat.}
\]

\[
P(E)_{\text{exact}} \rightarrow |C_\alpha|^2
\]

\[
P(E)_{\text{mic.}} \rightarrow \text{constant}
\]

\[
P(E)_{\text{can.}} \rightarrow \exp \left(-\frac{E}{k_B T}\right)
\]
Relation between thermalization and ETH

Quantifying ETH

$$\Delta_{\text{mic}} O = \sum_\alpha \frac{|O_{\alpha\alpha} - O_{\text{mic}}|}{N_{\text{states}} O_{\text{mic}}}$$

$O_{\alpha\alpha}$: eigenstate expectation values of \hat{O}

O_{mic}: microcanonical expectation values of \hat{O}

The sum over α contains all states with energies in the window $[E - \Delta E, E + \Delta E]$, and N_{states} is the number of states in the sum ($\Delta E = 0.1$).

Observables of interest: $n(k = 0)$ and $N(k = \pi)$
Outline

1 Introduction
 - Experiments and numerical simulations
 - Thermalization in quantum systems

2 Non-equilibrium dynamics in one-dimension
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3 Integrable systems
 - Generalized Gibbs ensemble

4 Summary
Results for $L = 24$, $N_b = 8$

Relative differences

$$\delta n_k = \frac{\sum_k |n(k) - n_{diag}(k)|}{\sum_k n_{diag}(k)}$$

Effective temperature $T = 3.0$

$$E = Z^{-1} \text{Tr} \left\{ \hat{H} \exp(-\hat{H}/k_B T) \right\}$$
Time fluctuations

Are they small because of dephasing?

\[\langle \hat{A}(t) \rangle - \langle \hat{A}(t) \rangle = \sum_{\alpha', \alpha} C_{\alpha'}^* C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} A_{\alpha', \alpha} \sim \sum_{\alpha', \alpha} e^{i(E_{\alpha'} - E_{\alpha})t} \frac{N_{\text{states}}}{N_{\text{states}}} A_{\alpha', \alpha} \]

\[\sim \sqrt{N_{\text{states}}^2} \frac{N_{\text{states}}}{N_{\text{states}}} A_{\alpha', \alpha} \sim A_{\alpha', \alpha} \]
Time fluctuations

Are they small because of dephasing?

\[
\langle \hat{A}(t) \rangle - \langle \hat{A}(t) \rangle = \sum_{\alpha', \alpha, \alpha' \neq \alpha} C_{\alpha'}^* C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} A_{\alpha' \alpha} \sim \sum_{\alpha', \alpha, \alpha' \neq \alpha} e^{i(E_{\alpha'} - E_{\alpha})t} \frac{1}{N_{\text{states}}} A_{\alpha' \alpha} \\
\sim \sqrt{\frac{N_{\text{states}}^2}{N_{\text{states}}}} A_{\alpha' \alpha}^{\text{typical}} \sim A_{\alpha' \alpha}^{\text{typical}}
\]

Time average of \(\langle \hat{A} \rangle \)

\[
\langle \hat{A} \rangle = \sum_{\alpha} |C_{\alpha}|^2 A_{\alpha \alpha} \\
\sim \sum_{\alpha} \frac{1}{N_{\text{states}}} A_{\alpha \alpha} \sim A_{\alpha \alpha}^{\text{typical}}
\]
Time fluctuations

Are they small because of dephasing?

\[
\langle \hat{A}(t) \rangle - \langle \hat{A}(t) \rangle = \sum_{\alpha', \alpha} C_{\alpha'}^* C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} A_{\alpha'\alpha} \sim \sum_{\alpha', \alpha} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} A_{\alpha'\alpha}
\]

\[
\sim \frac{\sqrt{N_{\text{states}}^2}}{N_{\text{states}}} A_{\text{typical}}^{\alpha'\alpha} \sim A_{\text{typical}}^{\alpha'\alpha}
\]

Time average of \(\langle \hat{A} \rangle \)

\[
\overline{\langle \hat{A} \rangle} = \sum_{\alpha} |C_{\alpha}|^2 A_{\alpha\alpha}
\]

\[
\sim \sum_{\alpha} \frac{1}{N_{\text{states}}} A_{\alpha\alpha} \sim A_{\text{typical}}^{\alpha\alpha}
\]
Outline

1. Introduction
 - Experiments and numerical simulations
 - Thermalization in quantum systems

2. Non-equilibrium dynamics in one-dimension
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Generalized Gibbs ensemble

4. Summary
Exact approach to hard-core bosons in 1D lattices

HCB Hamiltonian in an external potential

\[H = -t \sum_i \left(b_i^\dagger b_{i+1} + h.c. \right) + V_\alpha \sum_i x_\alpha^i n_i \]

Constraints on the bosonic operators

\[b_i^{\dagger 2} = b_i^2 = 0 \]

Jordan-Wigner transformation

\[b_i^\dagger = f_i^\dagger \prod_{\beta=1}^{i-1} e^{-i\pi f_\beta^\dagger f_\beta}, \quad b_i = \prod_{\beta=1}^{i-1} e^{i\pi f_\beta^\dagger f_\beta} f_i \]

Non-interacting fermion Hamiltonian

\[H_F = -t \sum_i \left(f_i^\dagger f_{i+1} + h.c. \right) + V_\alpha \sum_i x_\alpha^i n_i^f \]
Exact approach to hard-core bosons in 1D lattices

One-particle Green’s function

\[G_{ij} = \langle \Psi_{HCB} | b_i b_j^\dagger | \Psi_{HCB} \rangle = \langle \Psi_F | \prod_{\beta=1}^{i-1} e^{i\pi f_\beta^\dagger f_\beta} f_i f_j^\dagger \prod_{\gamma=1}^{j-1} e^{-i\pi f_\gamma^\dagger f_\gamma} | \Psi_F \rangle \]

\[\Downarrow \]

Time evolution

\[| \Psi_F(\tau) \rangle = e^{-iH_F \tau / \hbar} | \Psi_I^F \rangle = \prod_{\delta=1}^{N_b} \sum_{\sigma=1}^{N} P_{\sigma \delta}(\tau) f_\sigma^\dagger | 0 \rangle \]

\[\Downarrow \]

Exact Green’s function

\[G_{ij}(\tau) = \det \left[\left(P^A(\tau) \right)^\dagger \right] \]

Computation time \(\sim N^2 N_b^3 \rightarrow \) study very large systems

3000 lattice sites, 300 particles

Relaxation dynamics in an integrable system

Relaxation dynamics in an integrable system

Statistical description after relaxation

Thermal equilibrium

\[\hat{\rho} = Z^{-1} \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \]

\[Z = \text{Tr} \left\{ \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \right\} \]

\[E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\} \]

MR, PRA 72, 063607 (2005).
Statistical description after relaxation

Thermal equilibrium

\[
\hat{\rho} = \frac{1}{Z} \exp \left[- \frac{\left(\hat{H} - \mu \hat{N}_b \right)}{k_B T} \right]
\]

\[
Z = \text{Tr} \left\{ \exp \left[- \frac{\left(\hat{H} - \mu \hat{N}_b \right)}{k_B T} \right] \right\}
\]

\[
E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\}
\]

MR, PRA 72, 063607 (2005).

Evolution of \(n_{k=0} \)

\(n_k \) after relaxation

Evolution of \(n_{k=0} \)

\(n_k = 0 \) to 1000 2000 3000 4000

\(\tau \)

\(n_{k=0} \)

0 0.5 1 1.5

\(\text{Time evolution} \)

\(\text{Thermal} \)

\(n_k \) after relaxation

\(n_k = 0 \) to \(\pi/2 \) \(\pi/2 \) \(\pi \)

\(n_k \)

0 0.25 0.5

\(\text{After relax.} (N_b=30) \)

\(\text{After relax.} (N_b=15) \)

\(\text{Thermal} (N_b=30) \)

\(\text{Thermal} (N_b=15) \)
Statistical description after relaxation

Thermal equilibrium

\[\hat{\rho} = Z^{-1} \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \]

\[Z = \text{Tr} \left\{ \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \right\} \]

\[E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\} , \quad N_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\} \]

MR, PRA 72, 063607 (2005).

Constrained equilibrium

\[\hat{\rho}_c = Z_c^{-1} \exp \left[- \sum_m \lambda_m \hat{I}_m \right] \]

\[Z_c = \text{Tr} \left\{ \exp \left[- \sum_m \lambda_m \hat{I}_m \right] \right\} \]

\[\langle \hat{I}_m \rangle_{\tau=0} = \text{Tr} \left\{ \hat{I}_m \hat{\rho}_c \right\} \]
Statistical description after relaxation

Thermal equilibrium

\[\hat{\rho} = Z^{-1} \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \]

\[Z = \text{Tr} \left\{ \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \right\} \]

\[E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\} \]

MR, PRA 72, 063607 (2005).

Constrained equilibrium

\[\hat{\rho}_c = Z_c^{-1} \exp \left[- \sum_m \lambda_m \hat{I}_m \right] \]

\[Z_c = \text{Tr} \left\{ \exp \left[- \sum_m \lambda_m \hat{I}_m \right] \right\} \]

\[\langle \hat{I}_m \rangle_{\tau=0} = \text{Tr} \left\{ \hat{I}_m \hat{\rho}_c \right\} \]
Relaxation dynamics in an integrable system

Density profile

Momentum profile

\(\tau = 2000t \)

Constrained

Marcos Rigol (Georgetown University)

Breakdown of thermalization in 1D

September 17, 2009 32 / 35
Integrals of motion
(underlying noninteracting fermions)

\[\hat{H}_F \hat{\gamma}_m^{\dagger} |0\rangle = E_m \hat{\gamma}_m^{\dagger} |0\rangle \]

\[\{ \hat{I}_m \} = \{ \hat{\gamma}_m^{\dagger} \hat{\gamma}_m \} \]

Lagrange multipliers

\[\lambda_m = \ln \left[\frac{1 - \langle \hat{I}_m \rangle_{\tau=0}}{\langle \hat{I}_m \rangle_{\tau=0}} \right] \]
Statistical description after relaxation

Integrals of motion
(underlying noninteracting fermions)

\[\hat{H}_F \hat{\gamma}_m^{f\dagger} |0\rangle = E_m \hat{\gamma}_m^{f\dagger} |0\rangle \]
\[\{ \hat{I}_m \} = \{ \hat{\gamma}_m^{f\dagger} \hat{\gamma}_m^f \} \]

Lagrange multipliers

\[\lambda_m = \ln \left[\frac{1 - \langle \hat{I}_m \rangle_{\tau=0}}{\langle \hat{I}_m \rangle_{\tau=0}} \right] \]

Other examples in:

- M. Cramer et al., PRL 100, 030602 (2008)
There is thermalization far away from integrability

★ Finite size effects
Summary

- There is thermalization far away from integrability
 - Finite size effects
- Eigenstate thermalization hypothesis
 - \(\langle \psi_\alpha | \hat{A} | \psi_\alpha \rangle = \langle A \rangle_{\text{microcan.}} (E_\alpha) \)
Summary

- There is thermalization far away from integrability
 - ★ Finite size effects

- Eigenstate thermalization hypothesis
 - ★ \(\langle \psi_\alpha | \hat{A} | \psi_\alpha \rangle = \langle A \rangle_{\text{microcan.}} (E_\alpha) \)

- Thermalization and ETH break down close integrability (finite system)
 - ★ KAM in the thermodynamic limit?
Summary

- There is thermalization far away from integrability
 - ★ Finite size effects

- Eigenstate thermalization hypothesis
 - ★ \(\langle \psi_\alpha | \hat{A} | \psi_\alpha \rangle = \langle A \rangle_{\text{microcan.}} (E_\alpha) \)

- Thermalization and ETH break down close integrability (finite system)
 - ★ KAM in the thermodynamic limit?

- Small time fluctuations \(\leftrightarrow \) smallness of off-diagonal elements
Summary

- There is thermalization far away from integrability
 - Finite size effects

- Eigenstate thermalization hypothesis
 - \(\langle \psi_\alpha | \hat{A} | \psi_\alpha \rangle = \langle A \rangle_{\text{microcan.}}(E_\alpha) \)

- Thermalization and ETH break down close integrability (finite system)
 - KAM in the thermodynamic limit?

- Small time fluctuations \(\leftarrow \) smallness of off-diagonal elements

- Time plays only an auxiliary role
Summary

- There is thermalization far away from integrability
 - Finite size effects

- Eigenstate thermalization hypothesis
 - $\langle \psi_\alpha | \hat{A} | \psi_\alpha \rangle = \langle A \rangle_{\text{microcan.}} (E_\alpha)$

- Thermalization and ETH break down close integrability (finite system)
 - KAM in the thermodynamic limit?

- Small time fluctuations \leftrightarrow smallness of off-diagonal elements

- Time plays only an auxiliary role

- Integrable systems are different (Generalized Gibbs ensemble)
Poincaré recurrences?