Numerical Studies of Vortices and Dark Solitons in Atomic Bose-Einstein Condensates

Nicholas Parker

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Physics
University of Durham
October 2004
Numerical Studies of Vortices and Dark Solitons in Atomic Bose-Einstein Condensates

Nicholas Parker

Abstract

Dilute atomic Bose-Einstein condensates support intriguing macroscopic excitations in the form of quantized vortices and dark solitons. In this thesis we present extensive quantitative studies of the dynamics of these phenomena in the limit of zero temperature, performed by numerical simulation of the Gross-Pitaevskii equation. We show that vortices and dark solitons are inherently unstable to acceleration through the condensate, leading to the emission of sound waves. Indeed, for a single vortex/soliton, the power emitted is proportional to the square of the local acceleration. However, due to the finite size of the condensate, the vortex/soliton reinteracts with the emitted sound. This coupling has an important effect on the ensuing dynamics, and we illustrate how it can be engineered to induce net decay, stabilise, or even drive energy into the vortex/soliton.

Under the harmonic confinement typically employed to trap the condensates, the acceleration-induced decay is stabilised by reabsorption of the emitted sound. However, by modifying the trap geometry, e.g. by adding an inner dimple in which the soliton resides or an optical lattice potential, it is possible to break this equilibrium and so induce a net decay of the vortex/soliton in a controllable manner. The decay rate can be considerable and should be observable under current experimental conditions. The dynamical stability of quantized vortices is also relevant to the field of turbulence in superfluid Helium, where the motion of the vortices is induced by the surrounding distribution of vortices rather than density. We extend these results to this field, and additionally consider the interactions between two and three vortices, which are also found to involve sound emission.

By exciting the sound field of the condensate it is possible to drive parametrically energy into a dark soliton. In a real dissipative environment, this can be used to stabilise the soliton decay. Finally, we illustrate the links between dark solitons and vortices: a dark soliton embedded in a three-dimensional system is prone to decay into vortex rings, while a vortex in a quasi-one-dimensional geometry cannot be supported and exists as a hybrid between a vortex and dark soliton, known as a solitonic vortex.
Dedicated to Mum and Dad,
for all their love, friendship, and support.
Declaration

I confirm that no part of the material offered has previously been submitted by myself for a degree in this or any other University. Where material has been generated through joint work, the work of others has been indicated.

Nicholas Parker
Durham, 7th October 2004

The copyright of this thesis rests with the author. No quotation from it should be published without their prior written consent and information derived from it should be acknowledged.
Acknowledgements

I’m very grateful to Charles Adams for his support, enthusiasm, endless ideas, and motivational meetings throughout the three years. Many thanks to Nick Proukakis for his day-to-day help and guidance, and for the thorough proof-reading of this thesis, and to Mark Leadbeater for getting me up and running with the numerics and his insight into the field. Thanks also to Carlo Barenghi for stimulating discussions.

Thanks to all the regular coffee-timers, especially Cip for being a great office-mate from day one, Dave for amusing discussions, and Ifan Hughes for words of wisdom and cheerful chats. Outside of work, I’d like to say a big cheers to Griff(man) and Pete(man) for being such great housemates throughout. Rich, Kate and Jo, thanks for keeping me entertained with parties and summer holidays. Thanks to all the Parker family for the friendship and laughter. Last but certainly not least, I’d like to say a big thank you to Claire for her constant love and support.
Contents

Abstract
Declaration
Acknowledgements
List of figures
List of tables

1 Introduction

1.1 Superfluid Helium
1.2 Dilute Bose-Einstein condensates
1.3 Macroscopic (nonlinear) excitations

1.3.1 Vortices
1.3.2 Solitons

1.4 Instabilities of vortices and dark solitary waves in dilute BECs

1.4.1 Vortices
1.4.2 Dark solitary waves
1.4.3 Effects in a finite-sized system

1.5 Overview

2 Theoretical Framework

2.1 The Gross-Pitaevskii equation

2.1.1 Integrals of motion
2.1.2 Hydrodynamic equations

2.2 Time-independent solutions

2.2.1 Non-interacting regime
2.2.2 Interacting regime

2.3 Reduced dimensionality

2.4 Excitations in BECs

2.4.1 Collective excitations
2.4.2 Vortices
2.4.3 Dark solitons

2.5 Units

2.5.1 Natural units
2.5.2 Harmonic oscillator units .. 33
2.5.3 Natural units in reduced dimensions 33
2.6 Summary ... 36

3 Transverse instability of a dark solitary wave 37
3.1 Snake instability of a dark solitary wave 38
3.2 Effect of transverse confinement 43
3.3 Relating quasi-1D to pure 1D .. 46
3.4 Summary ... 47

4 Longitudinal dynamics of a dark soliton in an infinite system 48
4.1 Dark soliton incident on a potential step 49
 4.1.1 Positive step ($V_0 > 0$) .. 51
 4.1.2 Negative step ($V_0 < 0$) 56
4.2 Dark soliton traversing a linear ramp 59
4.3 Summary ... 63

5 Longitudinal instability of a dark soliton in confined systems 65
5.1 Dark soliton dynamics in a harmonic trap 66
 5.1.1 Comparison with 3D results 70
 5.1.2 Variation with soliton speed 72
 5.1.3 Variation with trap strength 73
5.2 Dark soliton dynamics in a dimple trap 75
 5.2.1 Homogeneous outer region 77
 5.2.2 Harmonic outer region ... 83
5.3 Dark soliton dynamics in a harmonic trap perturbed by an optical
 lattice ... 85
 5.3.1 Soliton dynamics and sound emission in an optical lattice 87
 5.3.2 Effect of varying the lattice height 89
 5.3.3 Effect of varying the lattice periodicity 92
5.4 Summary ... 95

6 Parametric driving of dark solitons 97
6.1 Parametric driving technique 98
6.2 Dissipationless regime ... 99
 6.2.1 Continuous pumping ... 99
 6.2.2 Interaction of soliton with driven dipole mode 102
 6.2.3 Optimisation of drive parameters 104
 6.2.4 Generating a higher energy soliton 106
6.3 Dissipative regime .. 109
 6.3.1 Stabilisation against decay 109
 6.3.2 Stabilisation at fixed energy 110
6.4 Summary ... 112
7 Single vortex in a confined Bose-Einstein condensate

7.1 Vortex in a 2D BEC under harmonic confinement
7.1.1 Vortex in a quasi-2D BEC
7.1.2 Quasi-2D condensate and the 2D GPE
7.1.3 Energetic stability of a vortex in a harmonic trap
7.1.4 Dynamics of a vortex in a harmonically-confined BEC
7.1.5 Precession frequency of a vortex in a harmonic trap

7.2 Vortex in a dimple trap
7.2.1 Dimple trap geometry
7.2.2 Deep dimple
7.2.3 Shallow dimple and homogeneous outer region
7.2.4 Shallow dimple and harmonic outer region

7.3 Application to vortex tangles in liquid Helium

7.4 Summary

8 Interaction of a vortex with other vortices

8.1 Corotating vortex pair
8.1.1 Dynamical properties

8.2 Vortex-antivortex pair
8.2.1 Dynamical properties

8.3 Interaction of a vortex-antivortex pair with a single vortex
8.3.1 Flyby regime
8.3.2 Reconnection regime

8.4 Summary

9 Vortices and svortices in non-axisymmetric geometries

9.1 Vortex in a non-axisymmetric condensate
9.1.1 Weakly non-axisymmetric regime
9.1.2 Strongly non-axisymmetric regime
9.1.3 Transition between the weakly and strongly non-axisymmetric regimes
9.1.4 Oscillation frequency in a non-axisymmetric condensate

9.2 Svortex in a strongly non-axisymmetric trap
9.2.1 Analog with a tilted dark solitary wave

9.3 Dynamics of svortices

9.4 Summary

10 Future work

10.1 Dark solitons
10.2 Vortices
10.3 Vortex-antivortex pairs and rings
10.4 Dark solitons and vortices in anharmonic traps
10.4.1 Dark soliton in a gaussian trap
10.4.2 Vortex in a gaussian trap
10.4.3 Dark solitons and vortices in other anharmonic traps
List of Figures

2.1 Density profile of a harmonically-confined BEC for various atomic interactions .. 22
2.2 Radial density profile of a quantized vortex 28
2.3 Density and phase profile of a dark soliton 30

3.1 Three-dimensional dark solitary wave in a trapped BEC 40
3.2 Snake instability of a 3D dark solitary wave 41
3.3 Sound emission from the transverse decay of a 3D dark solitary wave .. 42
3.4 Variation of the snake instability with transverse confinement 44
3.5 Number of vortex rings produced in the snake instability as a function of the transverse trap frequency 45
3.6 Density profile of a quasi-1D condensate from the pure 1D and 3D GPE ... 47

4.1 Schematic of infinitely-long positive potential step 50
4.2 Regimes of a dark soliton interacting an infinitely-long potential step .. 52
4.3 Transmitted speed of a dark soliton at an infinitely-long positive step, and the effects of quasi-trapping 54
4.4 Energy loss from a dark soliton incident in an infinitely-long positive step .. 55
4.5 Schematic of infinitely-long negative potential step 56
4.6 Transmitted speed and energy loss of a dark soliton interacting with an infinitely-long negative step 57
4.7 Density plots showing the dynamics of a dark soliton at an infinitely-long negative step ... 58
4.8 Schematic of a dark soliton incident on a linear ramp 59
4.9 Dynamics of a dark soliton on a linear ramp 60
4.10 Power emission from a dark soliton on a linear ramp 62

5.1 Density profile of a dark soliton in a condensate under harmonic confinement .. 66
5.2 Trajectory of a dark soliton in a harmonically-confined condensate, and the dipole mode of the system 67
List of Figures

5.3 Position and energy modulations of a dark soliton in a harmonically-confined BEC ... 69
5.4 Comparison of the dynamics of a dark soliton a harmonically-confined BEC from the 1D GPE and 3D GPE ... 71
5.5 Dark soliton dynamics in a harmonically-confined BEC: variation with speed ... 73
5.6 Dark soliton dynamics in a harmonically-confined BEC: variation with trap frequency ... 74
5.7 Schematic of the 1D dimple trap geometry ... 76
5.8 Evolution of the soliton energy in a dimple trap for various trap cutoffs V_0 ... 77
5.9 Soliton dynamics in a dimple trap with low cutoff $V_0 < \mu$... 80
5.10 Illustration of the sound-induced deformation of soliton in a dimple trap with low cut-off ... 82
5.11 Dark soliton dynamics in a realistic dimple trap, featuring an ambient harmonic trap ... 84
5.12 Schematic of a condensate in a harmonic trap perturbed by an optical lattice ... 86
5.13 Space-time density plots showing the evolution of a dark soliton in the absence/presence of an optical lattice ... 88
5.14 Dark soliton dynamics in absence/presence of an optical lattice ... 90
5.15 Dark soliton dynamics in a harmonic trap perturbed by an optical lattice: effect of lattice height ... 91
5.16 Effect of small lattice periodicity on the dynamics of a dark soliton ... 92
5.17 Dynamics of a dark soliton in a harmonic trap perturbed by an optical lattice: effect of lattice periodicity ... 93
6.1 Schematic of the parametric driving technique for a dark soliton in a harmonic trap ... 99
6.2 Soliton dynamics under parametric driving: dissipationless regime ... 101
6.3 Path of soliton and condensate dipole mode under driving ... 103
6.4 Optimisation of drive parameters ... 107
6.5 Effect of terminating the drive ... 108
6.6 Soliton dynamics under driving: dissipative regime ... 111
7.1 Schematic of a vortex in a harmonically-confined BEC ... 115
7.2 Comparison of the condensate density profiles for a quasi-2D BEC from the 3D GPE and 2D GPE ... 117
7.3 Vortex energy with radius in a 2D harmonic trap ... 118
7.4 Snap-shots of a 2D condensate featuring a precessing vortex ... 119
7.5 Path and energy of a vortex in a harmonically-confined BEC ... 120
7.6 Fourier transforms of energy and position of the vortex in a harmonically-confined BEC ... 121
7.7 Vortex precession frequency in a harmonic trap ... 123
7.8 Schematic of a vortex in a condensate confined by a dimple trap ... 124
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9</td>
<td>Vortex path in a deep and shallow dimple trap</td>
<td>126</td>
</tr>
<tr>
<td>7.10</td>
<td>Vortex radius and energy in a deep and shallow dimple</td>
<td>127</td>
</tr>
<tr>
<td>7.11</td>
<td>Power emission from a vortex precessing in a shallow dimple trap</td>
<td>129</td>
</tr>
<tr>
<td>7.12</td>
<td>Coefficient of acceleration squared power law for a vortex precessing in a shallow dimple</td>
<td>130</td>
</tr>
<tr>
<td>7.13</td>
<td>Vortex dynamics in a shallow dimple and ambient harmonic trap</td>
<td>133</td>
</tr>
<tr>
<td>7.14</td>
<td>Schematic of a vortex tangle</td>
<td>134</td>
</tr>
<tr>
<td>8.1</td>
<td>Density and phase profile of a corotating vortex pair</td>
<td>138</td>
</tr>
<tr>
<td>8.2</td>
<td>Angular frequency and acceleration of a corotating pair as a function of the separation</td>
<td>140</td>
</tr>
<tr>
<td>8.3</td>
<td>Sound emission from a corotating vortex pair</td>
<td>141</td>
</tr>
<tr>
<td>8.4</td>
<td>Density and phase profiles of a vortex-antivortex pair</td>
<td>143</td>
</tr>
<tr>
<td>8.5</td>
<td>Energy and speed of a vortex-antivortex pair as a function of separation</td>
<td>143</td>
</tr>
<tr>
<td>8.6</td>
<td>Schematic of the three-vortex interaction: vortex-antivortex pair incident on a single vortex</td>
<td>144</td>
</tr>
<tr>
<td>8.7</td>
<td>Dynamics of the vortices in the three-vortex interaction: flyby regime</td>
<td>146</td>
</tr>
<tr>
<td>8.8</td>
<td>Density profile following a flyby interaction</td>
<td>147</td>
</tr>
<tr>
<td>8.9</td>
<td>Dynamics of the vortices in the three-vortex interaction: reconnection regime</td>
<td>149</td>
</tr>
<tr>
<td>8.10</td>
<td>Density profile following a reconnection interaction</td>
<td>151</td>
</tr>
<tr>
<td>9.1</td>
<td>Density and phase profiles of a non-axisymmetric condensate featuring a vortex, for various trap ratios</td>
<td>154</td>
</tr>
<tr>
<td>9.2</td>
<td>Trajectory of a vortex in a weakly non-axisymmetric condensate</td>
<td>155</td>
</tr>
<tr>
<td>9.3</td>
<td>Longitudinal oscillation frequency of a vortex/svortex in a non-axisymmetric condensate as a function of trap ratio</td>
<td>158</td>
</tr>
<tr>
<td>9.4</td>
<td>Density and phase snapshots of the evolution of a vortex state in a strongly non-axisymmetric condensate</td>
<td>161</td>
</tr>
<tr>
<td>9.5</td>
<td>Density and phase snapshots of the evolution of a tilted dark solitary wave in a strongly non-axisymmetric condensate</td>
<td>162</td>
</tr>
<tr>
<td>9.6</td>
<td>Longitudinal trajectory of an initially-imprinted vortex, tilted black solitary wave, and plane black solitary wave in a strongly non-axisymmetric trap</td>
<td>165</td>
</tr>
<tr>
<td>10.1</td>
<td>Soliton formation in a harmonic trap under vigorous parametric driving</td>
<td>170</td>
</tr>
<tr>
<td>10.2</td>
<td>Soliton dynamics in a gaussian trap for varying traps depths</td>
<td>174</td>
</tr>
<tr>
<td>10.3</td>
<td>Dynamics of a dark soliton in a fixed gaussian trap for various initial speeds</td>
<td>175</td>
</tr>
<tr>
<td>10.4</td>
<td>Dynamics of a vortex, with fixed initial radius, in gaussian traps of various depths</td>
<td>176</td>
</tr>
<tr>
<td>10.5</td>
<td>Dynamics of a vortex in a fixed gaussian trap for various initial radial positions</td>
<td>177</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>Density profile of a vortex and vortex-like obstacle</td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>Density plots of plane sound waves incident on a vortex and vortex-like obstacle</td>
<td></td>
</tr>
<tr>
<td>B.1</td>
<td>Numerically-obtained vortex energy as a function of the integration radius</td>
<td></td>
</tr>
<tr>
<td>B.2</td>
<td>Numerically-obtained dark soliton energy as a function of integration radius</td>
<td></td>
</tr>
<tr>
<td>D.1</td>
<td>Schematic of the finite-length positive potential barrier</td>
<td></td>
</tr>
<tr>
<td>D.2</td>
<td>Schematic of fluid healing at a positive barrier</td>
<td></td>
</tr>
<tr>
<td>D.3</td>
<td>Effective potential at a positive barrier and the energy loss from an incident dark soliton</td>
<td></td>
</tr>
<tr>
<td>D.4</td>
<td>Background density at a positive potential barrier</td>
<td></td>
</tr>
<tr>
<td>D.5</td>
<td>Energy loss from a dark soliton interacting with a positive potential barrier</td>
<td></td>
</tr>
<tr>
<td>D.6</td>
<td>Schematic of the finite length negative potential barrier</td>
<td></td>
</tr>
<tr>
<td>D.7</td>
<td>Effective potential of the negative barrier and the energy loss from an incident soliton</td>
<td></td>
</tr>
<tr>
<td>D.8</td>
<td>Space-time density plots showing the dynamics of a soliton at a negative barrier</td>
<td></td>
</tr>
<tr>
<td>D.9</td>
<td>Schematic of a dark soliton incident on a gaussian bump</td>
<td></td>
</tr>
<tr>
<td>D.10</td>
<td>Dynamics of a dark soliton traversing a gaussian bump</td>
<td></td>
</tr>
<tr>
<td>D.11</td>
<td>Schematic of a dark soliton confined between two gaussian bumps</td>
<td></td>
</tr>
<tr>
<td>D.12</td>
<td>Dynamics of a dark soliton, speed $v = 0.3c$ oscillating between two gaussian bumps</td>
<td></td>
</tr>
<tr>
<td>D.13</td>
<td>Dynamics of a dark soliton, speed $v = 0.2c$, oscillating between two gaussian bumps</td>
<td></td>
</tr>
<tr>
<td>D.14</td>
<td>Dynamics of a dark soliton, speed $v = 0.5c$, oscillating between two gaussian bumps</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

2.1 The properties of the atomic species with positive scattering length that have been Bose condensed 32
2.2 Example conversions of 1D natural units to real 3D quantities . 35
2.3 Example conversions of 2D natural units to real 3D quantities . 35